Highwire Restrains Synaptic Growth by Attenuating a MAP Kinase Signal
نویسندگان
چکیده
Highwire is an extremely large, evolutionarily conserved E3 ubiquitin ligase that negatively regulates synaptic growth at the Drosophila NMJ. Highwire has been proposed to restrain synaptic growth by downregulating a synaptogenic signal. Here we identify such a downstream signaling pathway. A screen for suppressors of the highwire synaptic overgrowth phenotype yielded mutations in wallenda, a MAP kinase kinase kinase (MAPKKK) homologous to vertebrate DLK and LZK. wallenda is both necessary for highwire synaptic overgrowth and sufficient to promote synaptic overgrowth, and synaptic levels of Wallenda protein are controlled by Highwire and ubiquitin hydrolases. highwire synaptic overgrowth requires the MAP kinase JNK and the transcription factor Fos. These results suggest that Highwire controls structural plasticity of the synapse by regulating gene expression through a MAP kinase signaling pathway. In addition to controlling synaptic growth, Highwire promotes synaptic function through a separate pathway that does not require wallenda.
منابع مشابه
National Institute of Environmental Health Sciences third science seminar. Research Triangle Park, North Carolina, November 1982. Science open house poster sessions: Abstracts.
Background: The growth of new synapses shapes the initial formation and subsequent rearrangement of neural circuitry. Genetic studies have demonstrated that the ubiquitin ligase Highwire restrains synaptic terminal growth by down-regulating the MAP kinase kinase kinase Wallenda/dual leucine zipper kinase (DLK). To investigate the mechanism of Highwire action, we have identified DFsn as a bindin...
متن کاملSkpA restrains synaptic terminal growth during development and promotes axonal degeneration following injury.
The Wallenda (Wnd)/dual leucine zipper kinase (DLK)-Jnk pathway is an evolutionarily conserved MAPK signaling pathway that functions during neuronal development and following axonal injury. Improper pathway activation causes defects in axonal guidance and synaptic growth, whereas loss-of-function mutations in pathway components impairs axonal regeneration and degeneration after injury. Regulati...
متن کاملBimodal Control of Dendritic and Axonal Growth by the Dual Leucine Zipper Kinase Pathway
Knowledge of the molecular and genetic mechanisms underlying the separation of dendritic and axonal compartments is not only crucial for understanding the assembly of neural circuits, but also for developing strategies to correct defective dendrites or axons in diseases with subcellular precision. Previous studies have uncovered regulators dedicated to either dendritic or axonal growth. Here we...
متن کاملHighwire function at the Drosophila neuromuscular junction: spatial, structural, and temporal requirements.
Highwire is a huge, evolutionarily conserved protein that is required to restrain synaptic growth and promote synaptic transmission at the Drosophila neuromuscular junction. Current models of highwire function suggest that it may act as a ubiquitin ligase to regulate synaptic development. However, it is not known in which cells highwire functions, whether its putative ligase domain is required ...
متن کاملdCIP4 (Drosophila Cdc42-interacting protein 4) restrains synaptic growth by inhibiting the secretion of the retrograde Glass bottom boat signal.
The bone morphogenetic protein (BMP) ligand Glass bottom boat (Gbb) acts as a retrograde growth signal at the Drosophila neuromuscular junction (NMJ). Endocytic regulation of presynaptic BMP receptors has been proposed to attenuate retrograde BMP signaling. However, it remains unknown whether the Gbb signal is also regulated by postsynaptic mechanisms. Here, we provide evidence that Drosophila ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuron
دوره 51 شماره
صفحات -
تاریخ انتشار 2006